
PathSim: Meta PathBased TopK Similarity Search in
Heterogeneous Information Networks

Yizhou Sun† Jiawei Han† Xifeng Yan‡ Philip S. Yu§ Tianyi Wu⋄

† University of Illinois at UrbanaChampaign, Urbana, IL
‡ University of California at Santa Barbara, Santa Barbara, CA

§ University of Illinois at Chicago, Chicago, IL
⋄ Microsoft Corporation, Redmond, WA

†{sun22, hanj}@illinois.edu ‡xyan@cs.ucsb.edu §psyu@cs.uic.edu ⋄tiwu@microsoft.com

ABSTRACT

Similarity search is a primitive operation in database and Web
search engines. With the advent of large-scale heterogeneous in-
formation networks that consist of multi-typed, interconnected ob-
jects, such as the bibliographic networks and social media net-
works, it is important to study similarity search in such networks.
Intuitively, two objects are similar if they are linked by many paths
in the network. However, most existing similarity measures are
defined for homogeneous networks. Different semantic meanings
behind paths are not taken into consideration. Thus they cannot be
directly applied to heterogeneous networks.

In this paper, we study similarity search that is defined among
the same type of objects in heterogeneous networks. Moreover, by
considering different linkage paths in a network, one could derive
various similarity semantics. Therefore, we introduce the concept
of meta path-based similarity, where a meta path is a path consist-
ing of a sequence of relations defined between different object types
(i.e., structural paths at the meta level). No matter whether a user
would like to explicitly specify a path combination given sufficient
domain knowledge, or choose the best path by experimental trials,
or simply provide training examples to learn it, meta path forms
a common base for a network-based similarity search engine. In
particular, under the meta path framework we define a novel simi-
larity measure called PathSim that is able to find peer objects in the
network (e.g., find authors in the similar field and with similar rep-
utation), which turns out to be more meaningful in many scenarios
compared with random-walk based similarity measures. In order
to support fast online query processing for PathSim queries, we
develop an efficient solution that partially materializes short meta
paths and then concatenates them online to compute top-k results.
Experiments on real data sets demonstrate the effectiveness and ef-
ficiency of our proposed paradigm.

1. INTRODUCTION
Heterogeneous information networks are the logical networks in-

volving multiple typed objects and multiple typed links denoting
different relations, such as bibliographic networks, social media

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 11
Copyright 2011 VLDB Endowment 21508097/11/08... $ 10.00.

networks, and the knowledge network encoded in Wikipedia. It is
important to provide effective search functions in such networks,
where links play an essential role and attributes for objects are dif-
ficult to fully obtain. In particular, we are interested in providing
similarity search functions for objects that are from the same type.
For example, in a bibliographic network, a user may be interested
in the (top-k) most similar authors for a given author, or the most
similar venues for a given venue; in the Flickr network, a user may
be interested in searching for the most similar pictures for a given
picture, and so on.

Similarity search has been extensively studied for traditional cat-
egorical and numerical data types in relational data. There are also
a few studies leveraging link information in networks. Most of
these studies are focused on homogeneous networks or bipartite
networks, such as personalized PageRank (P-PageRank) [10], Sim-
Rank [8] and SCAN [20]. However, these similarity measures are
disregarding the subtlety of different types among objects and links.
Adoption of such measures to heterogeneous networks has signifi-
cant drawbacks: Objects of different types and links carry different
semantic meanings, and it does not make sense to mix them to mea-
sure the similarity without distinguishing their semantics.

Table 1: Top-4 similar venues for “DASFAA” under two meta paths.
Rank CPAPC path CPTPC path

1 DASFAA DASFAA
2 DEXA Data Knowl. Eng.
3 WAIM ACM Trans. DB Syst.
4 APWeb Inf. Syst.

To distinguish the semantics among paths connecting two ob-
jects, we introduce a meta path-based similarity framework for ob-
jects of the same type in a heterogeneous network. A meta path
is a sequence of relations between object types, which defines a
new composite relation between its starting type and ending type.
Consider a bibliographic network extracted from DBLP with four
types of objects, namely, authors (A), papers (P), terms (T), and
venues (C). Table 1 shows the top-4 most similar venues for a
given venue, DASFAA, based on (a) the common authors shared
by two venues, or (b) the common topics (i.e., terms) shared by
two venues. These two scenarios are represented by two distinct
meta paths: (a) CPAPC, denoting that the similarity is defined
by the meta path “venue-paper-author-paper-venue”, whereas (b)
CPTPC, by the meta path “venue-paper-topic-paper-venue”. A
user can choose either (a) or (b) or their combination based on the
preferred similarity semantics. According to Path (a), DASFAA is
closer to DEXA, WAIM, and APWeb, i.e., those that share many
common authors, whereas according to Path (b), it is closer to Data
Knowl. Eng., ACM Trans. DB Syst., and Inf. Syst., i.e., those that

992

address many common topics. The meta path framework provides
a powerful mechanism for a user to select an appropriate similarity
semantics, by choosing a proper meta path, or learn it from a set of
training examples of similar objects.

Under the proposed meta path-based similarity framework, there
are multiple ways to define a similarity measure between two ob-
jects, based on concrete paths following a given meta path. One
may adopt some existing similarity measures, such as (1) random
walk used in P-PageRank, (2) pairwise random walk used in Sim-
Rank, or directly apply (3) P-PageRank and (4) SimRank on the ex-
tracted sub-network. However, these measures are biased to either
highly visible objects (i.e., objects associated with a large number
of paths) or highly concentrated objects (i.e., objects with a large
percentage of paths going to a small set of objects). We propose a
new similarity measure PathSim, which is able to capture the subtle
semantics of similarity among peer objects in a network. In com-
parison, given a query object, PathSim can identify objects that
not only are strongly connected but also share similar visibility in
the network given the meta path. Table 2 presents in three mea-
sures the results of finding top-5 similar authors for “Anhai Doan”,
who is a well-established young researcher in the database field,
under the meta path APCPA (based on their shared venues), in
the database and information system (DBIS) area. P-PageRank re-
turns the most similar authors as those published substantially in
the area, i.e., highly ranked authors; SimRank returns a set of au-
thors that are concentrated on a small number of venues shared with
Doan; whereas PathSim returns Patel, Deshpande, Yang and Miller,
who share very similar publication records and are also rising stars
in the database field as Doan. Obviously, PathSim captures desired
semantic similarity as peers in such networks.

Table 2: Top-5 similar authors for “AnHai Doan” in DBIS area.
Rank P-PageRank SimRank PathSim

1 AnHai Doan AnHai Doan AnHai Doan
2 Philip S. Yu Douglas W. Cornell Jignesh M. Patel
3 Jiawei Han Adam Silberstein Amol Deshpande
4 Hector Garcia-Molina Samuel DeFazio Jun Yang
5 Gerhard Weikum Curt Ellmann Renée J. Miller

Compared with P-PageRank and SimRank, the calculation for
PathSim is much more efficient, as it is a local graph measure. But
it still involves expensive matrix multiplication operations for top-k
search functions, as we need to calculate the similarity between the
query and every object of the same type in the network. In order
to support fast online query processing for large-scale networks,
we propose a methodology that partially materializes short length
meta paths and then online concatenates them to derive longer meta
path-based similarity. First, a baseline method (PathSim-baseline)
is proposed, which computes the similarity between query object
x and all the candidate objects y of the same type. Next, a co-
clustering based pruning method (PathSim-pruning) is proposed,
which prunes candidate objects that are not promising according to
their similarity upper bounds.

The contributions of this paper are summarized as below.

1. It investigates similarity search in heterogeneous information

networks, a new but increasingly important issue due to the pro-
liferation of linked data and their broad applications.

2. It proposes a new framework of meta path-based similarity and
a new definition of similarity measure, PathSim, that captures
the subtle similarity semantics among peer objects in networks.

3. Computing PathSim is more efficient than computing P-
PageRank and SimRank due to the usage of limited meta paths.
Moreover, we provide an efficient co-clustering-based compu-

tation framework for fast query processing in large information
networks.

4. Our experiments demonstrate the effectiveness of meta path-
based similarity framework and the PathSim measure, in com-
parison with random walk-based measures, and the efficiency
of PathSim search algorithms.

2. PROBLEM DEFINITION
In this section, we introduce a meta path-based similarity frame-

work, a novel similarity measure under this framework, PathSim,
and propose a PathSim-based top-k similarity search problem in
information networks.

2.1 Heterogeneous Information Network
A heterogeneous information network is a special type of infor-

mation network with the underneath data structure as a directed
graph, which either contains multiple types of objects or multiple
types of links.

DEFINITION 1. Information Network. An information net-
work is defined as a directed graph G = (V,E) with an object

type mapping function φ : V → A and a link type mapping func-

tion ψ : E → R, where each object v ∈ V belongs to one par-

ticular object type φ(v) ∈ A, and each link e ∈ E belongs to a

particular relation ψ(e) ∈ R.

Different from the traditional network definition, we explicitly
distinguish object types and relationship types in the network. No-
tice that, if a relation exists from type A to type B, denoted as
ARB, the inverse relation R−1 holds naturally for BR−1A. For
most of the times, R and its inverse R−1 are not equal, unless the
two types are the same and R is symmetric. When the types of
objects |A| > 1 or the types of relations |R| > 1, the network
is called heterogeneous information network; otherwise, it is a
homogeneous information network.

EXAMPLE 1. A bibliographic information network is a typical

heterogeneous network, containing objects from four types of enti-

ties: papers (P), venues (i.e., conferences/journals) (C), authors

(A), and terms (T). For each paper p ∈ P , it has links to a set of

authors, a venue, a set of words as terms in the title, a set of citing

papers, and a set of cited papers, and the link types are defined by

these relations.

Given a complex heterogeneous information network, it is nec-
essary to provide its meta level (i.e., schema-level) description for
better understanding. Therefore, we propose the concept of net-
work schema to describe the meta structure of a network.

DEFINITION 2. Network schema. The network schema is a

meta template for a heterogeneous network G = (V,E) with the

object type mapping φ : V → A and the link mapping ψ : E → R,

which is a directed graph defined over object types A, with edges

as relations from R, denoted as TG = (A,R).

The concept of network schema is similar to that of the ER
(Entity-Relationship) model in database systems, but only captures
the entity type and their binary relations, without considering the at-
tributes for each entity type. Network schema serves as a template
for a network, and tells how many types of objects there are in the
network and where the possible links exist. Notice that although
a relational database can often be transformed into an information
network, the latter is much more general and can handle more un-
structured and non-normalized data and links, and is also easier to
deal with graph operations such as calculating the number of paths
between two objects.

993

Paper

Author

VenueTerm

Paper

Author

Venue

Paper

Author Author

(a) Network Schema (b) Meta Path: APC (c) Meta Path: APA

Figure 1: Bibliographic network schema and meta paths.

EXAMPLE 2. Bibliographic network schema. For a biblio-

graphic network defined in Example 1, the network schema is

shown in Fig. 1(a). Links exist between authors and papers denot-

ing the writing or written-by relations, between venues and papers

denoting the publishing or published-in relations, between papers

and terms denoting using or used-by relations, and between pa-

pers, denoting citing or cited-by relations.

2.2 Meta Pathbased Similarity Framework
In a heterogeneous network, two objects can be connected

via different paths. For example, two authors can be con-
nected via “author-paper-author” path, “author-paper-venue-paper-
author” path, and so on. Intuitively, the semantics underneath dif-
ferent paths imply different similarities. Formally, these paths are
called meta paths, defined as follows.

DEFINITION 3. Meta path. A meta path P is a path defined on

the graph of network schema TG = (A,R), and is denoted in the

form of A1
R1−→ A2

R2−→ . . .
Rl−→ Al+1, which defines a composite

relation R = R1 ◦R2 ◦ . . . ◦Rl between type A1 and Al+1, where

◦ denotes the composition operator on relations.

The length of P is the number of relations in P . Further, we say
a meta path is symmetric if the relation R defined by it is symmet-
ric. For simplicity, we also use type names denoting the meta path
if there exist no multiple relations between the same pair of types:
P = (A1A2 . . . Al+1). For example, in the DBLP network, the
co-author relation can be described using the length-2 meta path

A
writing−→ P

written-by−→ A, or short as APA if there is no ambiguity.
We say a path p = (a1a2 . . . al+1) between a1 and al+1 in net-
work G follows the meta path P, if ∀i, φ(ai) = Ai and each link
ei = 〈aiai+1〉 belongs to each relationRi inP . We call these paths
as path instances of P , which are denoted as p ∈ P . A meta path
P ′ is the reverse meta path of P , if P ′ is the reverse path of P in
TG, which is denoted as P−1 and defines an inverse relation of the
one defined by P. Similarly, we define the reverse path instance

of p as the reverse path of p in G, which is denoted as p−1. Two
meta paths P1 = (A1A2 . . . Al) and P2 = (A′

1A
′
2 . . . A

′
k) are

concatenable if and only if Al = A′
1, and the concatenated path is

written as P = (P1P2), which equals to (A1A2 . . . AlA
′
2 . . . A

′
k).

A simple example of concatenation is: AP and PA can be concate-
nated to the meta path APA, which defines the co-author relation.

Analogously, a meta path in an information network corresponds
to a feature in a traditional data set. Given a user-specified meta
path, say P = (A1A2 . . . Al), several similarity measures can be
defined for a pair of objects x ∈ A1 and y ∈ Al, according to
the path instances between them following the meta path. We list
several straightforward measures:

• Path count: the number of path instances p between x and y
following P : s(x, y) = |{p : p ∈ P}|.

• Random walk: s(x, y) is the probability of the random walk
that starts form x and ends with y following meta path P ,
which is the sum of the probabilities of all the path instances
p ∈ P starting with x and ending with y, denoted as Prob(p):
s(x, y) =

∑

p∈P Prob(p).

• Pairwise random walk: for a meta path P that can be de-
composed into two shorter meta paths with the same length
P = (P1P2), s(x, y) is then the pairwise random walk proba-
bility starting from objects x and y and reaching the same mid-
dle object: s(x, y) =

∑

(p1p2)∈(P1P2) Prob(p1)Prob(p
−1
2),

where Prob(p1) and Prob(p−1
2) are random walk probabilities

of the two path instances.

In general, we can define a meta path-based similarity framework
for the object x and object y as: s(x, y) =

∑

p∈P f(p), where

f(p) is some measure defined on the path instance p between x
and y. Notice that, for measures P-PageRank and SimRank defined
on homogeneous networks, they are weighted combinations of ran-
dom walk measure or pairwise random walk measure over differ-
ent meta paths in homogeneous networks, in which the meta paths
are in the form of the concatenation of one relation with different
lengths.

2.3 PathSim: A Novel Similarity Measure
Although there have been several similarity measures as pre-

sented above, they are biased to either highly visible objects or
highly concentrated object but cannot capture the semantics of peer
similarity. For example, the path count and random walk-based
similarity always favor objects with large degrees, and the pairwise
random walk-based similarity favors concentrated objects that the
majority of the links goes to a small portion of objects. However, in
many scenarios, finding similar objects in networks is to find sim-

ilar peers, such as finding similar authors based on their field and
reputation, finding similar actors based on their movie style and
productivity, and finding similar products based on its function and
popularity.

This motivated us to propose a new, meta path-based similarity
measure, called PathSim, that captures the subtlety of peer similar-
ity. The intuition behind it is that two similar peer objects should
not only be strongly connected, but also share comparable visibil-
ity. As the relation of peer should be symmetric, we then confine
PathSim merely on the symmetric meta paths. It is easy to see that,
round trip meta paths with the form of P = (PlP−1

l) are always
symmetric.

DEFINITION 4. PathSim: A Meta path-based similarity mea-
sure. Given a symmetric meta path P , PathSim between two ob-
jects of the same type x and y is:

s(x, y) =
2 × |{px y : px y ∈ P}|

|{px x : px x ∈ P}| + |{py y : py y ∈ P}|

where px y is a path instance between x and y, px x is that be-

tween x and x, and py y is that between y and y.

This shows that given a meta path P , s(x, y) is defined in terms
of two parts: (1) their connectivity defined by the number of paths
between them following P ; and (2) the balance of their visibility,
where the visibility is defined as the number of path instances be-
tween themselves. Notice that we do count multiple occurrences of
a path instance as the weight of the path instance, which is the prod-
uct of weights of all the links in the path instance. To see how this
new measure works, we compare PathSim with a set of measures
using a toy example to find peer authors, using meta path ACA.

994

EXAMPLE 3. Comparing a set of measures. Table 3(a) shows

a toy example of adjacency matrix WAC between authors and

venues in a network, denoting the number of papers published

by each author in each venue. The query is to find the peer

authors for “Mike”. As “Bob” has exactly the same publica-

tion records as “Mike”, it is expected to be the most similar

peer. PathSim generates similarity scores: s(Mike, Jim) =
2×(2×50+1×20)

(2×2+1×1)+(50×50+20×20)
= 0.0826, s(Mike, Bob) = 1, and

so on; and the similarity scores derived by P-PageRank, SimRank,

random walk (RW), and pairwise random walk (PRW) on the same

meta pathACA, are also illustrated in Table 3(b). One can see that

PathSim is the only measure giving the result that Bob and Mary are

more similar to Mike than Jim is, in terms of peers, which follows

human intuition.

(a) Adjacency matrix WAC .

SIGMOD VLDB ICDE KDD

Mike 2 1 0 0
Jim 50 20 0 0

Mary 2 0 1 0
Bob 2 1 0 0
Ann 0 0 1 1

(b) Similarity between Mike and other authors.

Jim Mary Bob Ann

P-PageRank 0.3761 0.0133 0.0162 0.0046
SimRank 0.7156 0.5724 0.7125 0.1844

RW 0.8983 0.0238 0.0390 0
PRW 0.5714 0.4444 0.5556 0

PathSim 0.0826 0.8 1 0

Table 3: Comparison of a set of similarity measures.

We now introduce the calculation of PathSim between any two
objects of the same type given a certain meta path.

DEFINITION 5. Commuting matrix. Given a network G =
(V,E) and its network schema TG, a commuting matrix M for a
meta path P = (A1A2 . . . Al) is defined as M = WA1A2

WA2A3

. . .WAl−1Al
, where WAiAj

is the adjacency matrix between type

Ai and type Aj . M(i, j) represents the number of paths instances

between object xi ∈ A1 and object yj ∈ Al under meta path P .

For example, commuting matrix M for the meta path P =
(APA) is a co-author matrix, with each element representing the
number of co-authored papers for the pair of authors. Given a sym-
metric meta path P, PathSim between two objects xi and xj from

the same type can be calculated as s(xi, xj) =
2Mij

Mii+Mjj
, where

M is the commuting matrix for the meta path P , Mii and Mjj are
the visibility for xi and xj in the network given the meta path.

It is easy to see that the commuting matrix for the reverse meta
path of Pl, which is P−1

l , is the transpose of commuting matrix for
P l. In this paper, we only consider the meta path in the round trip
form of P = (PlP−1

l), to guarantee its symmetry and therefore the
symmetry of the PathSim measure. Notice that, if the meta path is
length-2, the measure of PathSim is degenerated to a measure that
compares the similarity of the neighbor sets of two objects, which
is called Dice’s coefficient [4]. By viewing PathSim in the meta

path-based similarity framework, f(p) = 2
w(a1,a2)...w(al−1,al)

Mii+Mjj
,

for any path instance p starting from xi and ending with xj fol-
lowing the meta path, where w(ai, aj) is the weight for the link
〈ai, aj〉 defined in the adjacency matrix.

Some good properties of PathSim, such as symmetric, self-
maximum and balance of visibility, are shown in Theorem 1. For

the balance property, we can see that the larger difference of the
visibility of the two objects, the smaller upper bound for their Path-
Sim similarity.

THEOREM 1. Properties of PathSim:

1. Symmetric: s(xi, xj) = s(xj, xi).

2. Self-maximum: s(xi, xj) ∈ [0, 1], and s(xi, xi) = 1.

3. Balance of Visibility: s(xi, xj) ≤ 2√
Mii/Mjj+

√
Mjj/Mii

.

PROOF. See Proof in the Appendix.

Under the definition of PathSim, we formally define our top-k
similarity search problem as follows.

DEFINITION 6. Top-k similarity search under PathSim.

Given an information network G and the network schema TG,

given a meta path P = (PlP−1
l), where P l = (A1A2 . . . Al),

the top-k similarity search for an object xi ∈ A1 is to find sorted

k objects in the same type A1, such that s(xi, xj) ≥ s(xi, x
′
j), for

any x′
j not in the returning list and xj in the returning list, where

s(xi, xj) is defined as in Def. 4.

Although using meta path-based similarity we can define sim-
ilarity between two objects given any round trip meta paths, the
following theorem tells us a very long meta path is not very mean-
ingful. Indeed, due to the sparsity of real networks, objects that
are similar may share no immediate neighbors, and longer meta
paths will propagate similarities to remote neighborhoods. For
example, as in the DBLP example, if we consider the meta path
APA, only two authors that are co-authors have a non-zero sim-
ilarity score; but if we consider longer meta paths like APCPA
or APTPA, authors will be considered to be similar if they have
published papers in a similar set of venues or sharing a similar set
of terms no matter whether they have co-authored. But how far
should we keep going? The following theorem tells us that a very
long meta path may be misleading. We now use Pk to denote a
meta path repeating k times of the basic meta path pattern of P ,
e.g., (ACA)2 = (ACACA).

THEOREM 2. Limiting behavior of PathSim under infinity

length meta path. Let meta path P(k) = (PlP−1
l)k, MP be the

commuting matrix for meta path Pl, and M (k) = (MPM
T

P)k be

the commuting matrix for P(k), then by PathSim, the similarity be-
tween objects xi and xj as k → ∞ is:

lim
k→∞

s(k)(i, j) =
2r(i)r(j)

r(i)r(i) + r(j)r(j)
=

2
r(i)
r(j)

+
r(j)
r(i)

where r is the primary eigenvector of M , and r(i) is the ith item.

PROOF. See Proof in the Appendix.

As primary eigenvectors can be used as authority ranking of ob-
jects [16], the similarity between two objects under an infinite meta
path can be viewed as a measure defined on their rankings (r(i)
is the ranking score for object xi). Two objects with more similar
ranking scores will have higher similarity (e.g., SIGMOD will be
similar to AAAI). Later experiments (Table 8) will show that this
similarity, with the meaning of global ranking, is not that useful.
Notice that, the convergence of PathSim with respect to path length
is usually very fast and the length of 10 for networks of the scale of
DBLP can almost achieve the effect of a meta path with an infinite
length. Therefore, in this paper, we only aim at solving the top-k
similarity search problem for a relatively short meta path.

Even for a relatively short length, it may still be inefficient in
both time and space to materialize all the meta paths. Thus we
propose in Section 3 materializing commuting matrices for short
length meta paths, and concatenating them online to get longer ones
for a given query.

995

3. ONLINE QUERY PROCESSING FOR

SINGLE META PATH
This section is on efficient top-k PathSim similarity search for

online queries, under a single meta path, with two algorithms pro-
posed: PathSim-baseline and PathSim-pruning, both returning ex-

act top-k results for the given query. The algorithm for multiple
meta path combination with different weights is discussed in Ap-
pendix B. Note that the same methodology can be adopted by other
meta path-based similarity measures, such as RW and PRW, by tak-
ing a different definition of commuting matrix accordingly.

While the definition of meta path-based similarity search is flexi-
ble to accommodate different queries, it requires expensive compu-
tations (matrix multiplications), which is not affordable for online
query processing in large-scale information networks. One pos-
sible solution is to materialize all the meta paths within a given
length. Unfortunately, it is time and space expensive to materialize
all the possible meta paths. For example, in the DBLP network, the
similarity matrix corresponding to a length-4 meta path, APCPA,
for identifying similar authors publishing in common venues is a
710K × 710K matrix, whose non-empty elements reaches 5G,
and requires storage size more than 40G (up to 4T for longer meta
path between authors). Thus we propose the solution to partially
materialize commuting matrices for short length meta paths, and
concatenate them online to get longer ones for a given query, which
returns search results in a reasonable response time while reduces
the storage space significantly.

3.1 Single Meta Path Concatenation
Given a meta path P = (P lP−1

l), where Pl =
(A1 · · ·Al), the commuting matrix for path P l is MP =
WA1A2

WA2A3
· · ·WAl−1Al

, the commuting matrix for path P is

M = MPM
T

P . Let n be the number of objects in A1. For a
query object xi ∈ A1, if we compute the top-k most similar objects
xj ∈ A1 for xi on-the-fly, without materializing any intermediate
results, computing M from scratch would be very expensive. On
the other hand, if we have pre-computed and stored the commut-
ing matrix M = MPM

T

P , it would be a trivial problem to get the
query results: We only need to locate the corresponding row in the
matrix for the query xi, re-scale it using (Mii+Mjj)/2, and finally
sort the new vector and return the top-k objects. However, fully
materializing the commuting matrices for all possible meta paths
is also impractical, since the space complexity (O(n2)) would pre-
vent us from storing M for every meta path. Instead of taking the
above extreme, we partially materialize commuting matrixMT

P for

meta path P−1
l , and compute top-k results online by concatenating

P l and P−1
l into P without full matrix multiplication.

We then examine the concatenation problem, i.e., if the com-
muting matrix M for the full meta path P is not pre-computed and
stored, but the commuting matrix MT

P corresponding to the partial

meta path P−1
l has been pre-computed and stored. In this case, we

assume the main diagonal of M , i.e., D = (M11, . . . ,Mnn), is
pre-computed and stored. Since for Mii = MP (i, :)MP (i, :)T ,
the calculation only involves MP (i, :) itself, and only O(nd) in
time and O(n) in space are required, where d is the average num-
ber of non-zero elements in each row of MP for each object. As

the commuting matrices of Pl and P−1
l are transpose to each other,

we only need to store one of them in the sparse form. But from the
efficiency point of view, we will keep both row index and column
index for fast locating any rows and columns. In this study, we
only consider concatenating the partial paths P l and P−1

l into the
form P = PlP−1

l or P = P−1
l P l. For example, given a pre-

stored meta path APC, we are able to answer queries for meta

paths APCPA and CPAPC. For our DBLP network, to store
commuting matrix for partial meta path APC only needs around
25M space, which is less than 0.1% of the space for materializing
meta path APCPA. Other concatenation forms that may lead to
different optimization methods are also possible (e.g., concatenat-
ing several short meta paths). In the following discussion, we focus
on the algorithms using the concatenation form P = P lP−1

l .

3.2 Baseline
Suppose we know the commuting matrix MP for path Pl,

and the diagonal vector D = (Mii)
n
i=1, in order to get top-k

objects xj ∈ A1 with the highest similarity for the query xi,
we need to compute s(i, j) for all xj . The straightforward
baseline is: (1) first apply vector-matrix multiplication to get

M(i, :) = MP (i, :)MT

P ; (2) calculate s(i, j) = 2M(i,j)
M(i,i)+M(j,j)

for

all xj ∈ A1; and (3) sort s(i, j) to return the top-k list in the final
step. When n is very large, the vector-matrix computation will be
too time consuming to check every possible object xj . Therefore,
we first select xj ’s that are not orthogonal to xi in the vector
form, by following the links from xi to find 2-step neighbors
in commuting matrix MP , i.e., xj ∈ CandidateSet =

{⋃yk∈MP .neighbors(xi)
MT

P .neighbors(yk)}, where

MP .neighbors(xi)= {yk|MP (xi, yk) 6= 0}, which can be
easily obtained in the sparse matrix form of MP that indexes both
rows and columns. This will be much more efficient than pairwise
comparison between the query and all the objects of that type.
We call this baseline concatenation algorithm as PathSim-baseline

(See Algorithm 2).
The PathSim-baseline algorithm, however, is still time consum-

ing if the candidate set is very large. Although MP can be rel-
atively sparse given a short length meta path, after concatenation,
M could be dense, i.e., the CandidateSet could be very large.
Still, considering the query object and one candidate object repre-
sented by query vector and candidate vector, the dot product be-
tween them is proportional to the size of their non-zero elements.
The time complexity for computing each candidate is O(d) on av-
erage and O(m) in the worst case, that is,O(nm) in the worst case
for all the candidates, where n is the row size ofMP , i.e., the num-
ber of objects in type A1, and m the column size of MP , i.e., the
number of objects in type Al, and d the average non-zero element
for each object inMP . We now propose a co-clustering based top-
k concatenation algorithm, by which non-promising target objects
are dynamically filtered out to reduce the search space.

3.3 CoClustering Based Pruning
In the baseline algorithm, the computational costs involve two

factors. First, the more candidates to check, the more time the al-
gorithm will take; second, for each candidate, the dot product of
query vector and candidate vector will at most involve m opera-
tions, where m is the vector length. The intuition to speed up the
search is to prune unpromising candidate objects using simpler cal-
culations. Based on the intuition, we propose a co-clustering (i.e.,
clustering rows and columns of a matrix simultaneously) based
path concatenation method, which first generates co-clusters of two
types of objects for partial commuting matrix, then stores neces-
sary statistics for each of the blocks corresponding to different co-
cluster pairs, and then uses the block statistics to prune the search
space. For better illustration, we call clusters of type A1 as tar-

get clusters, since the objects in A1 are the targets for the query;
and call clusters of type Al as feature clusters, since the objects in
Al serve as features to calculate the similarity between the query
and the target objects. By partitioning A1 into different target clus-

996

X

Query vector:

Ml(xi,:)

Ml
T

X

X

X Upperbound1

Upperbound2

Exact ValueC1 C3C2

R2

R3

R1

Co-cluster

(R1,C1)

Column/target

clusters:

Row/feature

clusters:

Figure 2: Illustration of Pruning Strategy.

ters, if a whole target cluster is not similar to the query, then all
the objects in the target cluster are likely not in the final top-k lists
and can be pruned. By partitioning Al into different feature clus-
ters, cheaper calculations on the dimension-reduced query vector
and candidate vectors can be used to derive the similarity upper
bounds.

This pruning idea is illustrated in Fig. 2 as follows. Given the
partial commuting matrix MT

l and its 3 × 3 co-clusters, and the
query vector Ml(xi, :) for query object xi, first the query vector is
compressed into the aggregated query vector with the length of 3,
and the upper bounds of the similarity between the query and all
the 3 target clusters are calculated based on the aggregated query
vector and aggregated cluster vectors; second, for each of the target
clusters, if they cannot be pruned, calculate the upper bound of the
similarity between the query and each of the 3 candidates within
the cluster using aggregated vectors; third, if the candidates cannot
be pruned, calculate the exact similarity using the non-aggregated
query vector and candidate vectors.

The details of the co-clustering algorithm and the co-clustering
based pruning algorithm, PathSim-pruning are introduced in Ap-
pendix A. Experiments show that PathSim-Pruning can signif-
icantly improve the query processing speed comparing with the
baseline algorithm, without affecting the search quality.

4. EXPERIMENTS
For the experiments, we use the bibliographic network extracted

from DBLP and the Flickr network to show the effectiveness of
the PathSim measure and the efficiency (Appendix A.1) of the pro-
posed algorithms.

4.1 Data Sets
We use the DBLP dataset downloaded in Nov. 2009 as the main

test dataset. It contains over 710K authors, 1.2M papers, and 5K
venues (conferences/journals). After removing stopwords in paper
titles, we get around 70K terms appearing more than once. Our
DBLP networks are built according to the network schema intro-
duced in Example 2, except that there is no direct link between pa-
pers since DBLP provides very limited citation information. This
dataset is referred as “full DBLP dataset”. Two small subsets of
the data (to alleviate the high computational costs of P-PageRank
and SimRank) are used for the comparison with other similarity
measures in effectiveness: (1) “DBIS dataset”, which contains all
the 464 venues and top-5000 authors from the database and infor-
mation system area; and (2) “4-area dataset”, which contains 20
venues and top-5000 authors from 4 areas: database, data mining,

machine learning and information retrieval [17], and cluster labels
are given for all the 20 venues and a subset of 1713 authors.

For additional case studies (See Appendix C), we construct a
Flickr network from a subset of the Flickr data, which contains four

types of objects: images, users, tags, and groups. Links exist be-
tween images and users, images and tags, and images and groups.
We use 10,000 images from 20 groups as well as their related 664
users and 10284 tags appearing more than once to construct the
network.

4.2 Effectiveness

1. Comparing PathSim with other measures

When a meta path P = (P lP l
−1) is given, other measures such

as random walk (RW) and pairwise random walk (PRW) can be
applied on the same meta path, and P-PageRank and SimRank can
be applied on the sub-network extracted from P. For example, for
the meta path CPAPC (CAC in short) for finding venues shar-
ing the same set of authors, the bipartite graph MCA, derived from
commuting matrix corresponding to CPA can be used in both P-
PageRank and SimRank algorithms. In our experiments, the damp-
ing factor for P-PageRank is set as 0.9 and the one for SimRank is
set as 0.8.

First, a case study is shown in Table 4, which is applied on
“DBIS dataset”, under the meta path CAC. One can see that for
query “PKDD” (short for “Principles and Practice of Knowledge
Discovery in Databases”, a European data mining conference), P-
PageRank favors venues with higher visibility, such as KDD and
several well-known venues; SimRank prefers concentrated venues
(i.e., a large portion of publications goes to a small set of authors)
and returns many not well-known venues such as “Local Pattern
Detection” and KDID; RW also favors highly visible objects such
as KDD, but brings in fewer irrelevant venues due to that it utilizes
merely one short meta path; PRW performs similar to SimRank,
but brings in more not so well-known venues due to the short meta
path it uses; whereas PathSim gives venues with similar area as
well as similar reputation as PKDD, such as ICDM and SDM.

We then labeled top-15 results for 15 queries from venue type
(SIGMOD, VLDB, ICDE, PODS, EDBT, DASFAA, KDD, ICDM,
PKDD, SDM, PAKDD, WWW, SIGIR, TREC and APWeb) in
“DBIS dataset”, to test the quality of the ranking lists given by
5 measures. We label each result object with relevance score
as three levels: 0–non-relevant, 1–some-relevant, and 2–very-
relevant. Then we use the measure nDCG (Normalized Discounted
Cumulative Gain, with the value between 0 and 1, the higher the
better) [9] to evaluate the quality of a ranking algorithm by compar-
ing its output ranking results with the labeled ones (Table 5). The
results show that PathSim gives the best ranking quality in terms of
human intuition, which is consistent with the previous case study.

Next, we study the performance of different single meta path-
based similarity measures, including PathSim, RW, and PRW, in the
task of clustering, where these measures use exactly the same infor-
mation to determine the pairwise similarity between objects. Note
the clustering problem is rather different from node-oriented simi-
larity search but can still be used to roughly compare the sensitivity
of the similarity measures. We use “4-area dataset” to evaluate the
clustering performance, since this dataset naturally has 4 clusters,
under the meta pathCAC for venues andACA for authors. We ap-
ply Normalized Cut [15] to the 3 similarity matrices, and use NMI
(Normalized Mutual Information, with the value between 0 and 1,
the higher the better) [16] to calculate the clustering accuracy for
both venues and authors, and their weighted average accuracy over
the two types. The average clustering accuracy results (based on
100 runs) for the venues-author network with different similarity
measures are summarized in Table 6. It turns out that PathSim pro-
duces overall better performance in terms of weighted average of
clustering accuracy in both types.

997

Table 4: Case study of five similarity measures on query“PKDD” on the “DBIS dataset”.
Rank P-PageRank SimRank RW PRW PathSim

1 PKDD PKDD PKDD PKDD PKDD
2 KDD Local Pattern Detection KDD Local Pattern Detection ICDM
3 ICDE KDID ICDM DB Support for DM Appl. SDM
4 VLDB KDD PAKDD Constr.-Bsd. Min. & Induc. DB PAKDD
5 SIGMOD Large-Scale Paral. Data Min. SDM KDID KDD
6 ICDM SDM TKDE MCD Data Min. Knowl. Disc.
7 TKDE ICDM SIGKDD Expl. Pattern Detection and Discovery SIGKDD Expl.
8 PAKDD SIGKDD Expl. ICDE RSKD Knowl. Inf. Syst.
9 SIGIR Constr.-Bsd. Min. & Induc. DB SEBD (Italian Sympo. on Adv. DB) WImBI (Web Intell. Meets Brain Inf.) J. Intell. Inf. Syst.
10 CIKM TKDD CIKM Large-Scale Paral. Data Min. KDID

Table 5: Top-15 query results accuracy for five similarity measures on

“DBIS dataset” measured by nDCG.
P-PageRank SimRank RW PRW PathSim

Accuracy 0.5552 0.6289 0.7061 0.5284 0.7446

Table 6: Clustering accuracy for single meta path-based simi-

larity measures on “4-area dataset”.
RW PRW PathSim

Venue NMI 0.6159 0.8198 0.8116

Author NMI 0.6486 0.6364 0.6501

Weighted Avg. NMI 0.6485 0.6371 0.6507

2. Semantic meanings of different meta paths

As we pointed out, different meta paths give different semantic
meanings, which is one of the reasons that similarity definitions
in homogeneous networks cannot be applied directly to heteroge-
neous networks. Besides the motivating example in the introduc-
tion section, Table 7 shows the author similarity under two scenar-
ios for author Christos Faloutsos: co-authoring papers and pub-

lishing papers in the same venues, represented by the meta paths
APA and APCPA respectively. One can see that the first path
returns co-authors who have strongest connections with Faloutsos
(e.g., students and close collaborators) in DBLP, whereasAPCPA
returns those publishing papers in the most similar venues.

Table 7: Top-10 most similar authors to “Christos Faloutsos”

under different meta paths on “full DBLP dataset”.

(a) Path: APA

Rank Author

1 Christos Faloutsos
2 Spiros Papadimitriou
3 Jimeng Sun
4 Jia-Yu Pan
5 Agma J. M. Traina
6 Jure Leskovec
7 Caetano Traina Jr.
8 Hanghang Tong
9 Deepayan Chakrabarti
10 Flip Korn

(b) Path: APCPA

Rank Author

1 Christos Faloutsos
2 Jiawei Han
3 Rakesh Agrawal
4 Jian Pei
5 Charu C. Aggarwal
6 H. V. Jagadish
7 Raghu Ramakrishnan
8 Nick Koudas
9 Surajit Chaudhuri
10 Divesh Srivastava

3. The impact of path length

The next interesting question is how the length of meta path im-
pacts the similarity definition. Table 8 shows an example of venues
similar to “SIGMOD” with three meta paths, using exactly the
same basic meta path, but with different repeating times. These
meta paths are (CPAPC)2, (CPAPC)4 and its infinity form
(global ranking-based similarity). Notice that in (CPAPC)2, two
venues are similar if they share many similar authors who pub-
lish papers in the same venues; while in (CPAPC)4, the simi-
larity definition of those venues will be further relaxed, namely,
two venues are similar if they share many similar authors who pub-

lish papers in similar venues. Since venue type only contains 5K
venues, we are able to get the full materialization commuting ma-
trix for (CPAPC)2. (CPAPC)4 is obtained using meta path
concatenation from (CPAPC)2. The results are summarized in
Table 8, where longer path gradually bring in more remote neigh-
bors, with higher similarity score, and finally it degenerates into
global ranking comparison. Through this study, we can see that the
meta path with relatively short length is good enough to measure
similarity, and a long meta path may even reduce the quality.

Table 9 shows that short meta paths produce better similarity
measures in terms of clustering accuracy. We checked two other
meta paths, namely CPTPC and APTPA, which give the same
conclusion.

5. RELATED WORK
Similarity measure has been widely studied in categorical, nu-

merical, or mix-type data sets, such as cosine similarity defined on
two vectors, Jaccard coefficient on two sets, and Euclidean distance
on two numerical data points. Based on the traditional similarity
measures, a recent study [19] proposes an efficient top-k similar-
ity pair search algorithm, top-k-join, in relational database, which
only considers similarity between tuples. Also widely studied are
k nearest neighbor search in spatial data [11] and other high di-
mensional data [2], which aims at finding top-k nearest neighbors
according to similarities defined on numerical features. However,
these similarity definitions cannot be applied to networks.

Similarity measures defined on homogeneous networks emerged
recently. Personalized PageRank [10] is an asymmetrical similarity
measure that evaluates the probability starting from object x to visit
object y by randomly walking on the network with restart. More
discussions on how to scale the calculation for online queries are
in [6, 18], etc., and how to derive top-k answers efficiently is stud-
ied in [7]. SimRank [8] is a symmetric similarity measure defined
on homogeneous networks, which can also be directly applied to
bipartite networks. The intuition behind SimRank is propagating
pairwise similarity to their neighboring pairs. Due to its computa-
tional complexity, there are many follow-up studies (e.g., [12]) on
speeding up such calculations. SCAN [20] measures similarity of
two objects by comparing their immediate neighbor sets.

ObjectRank [1] and PopRank [13] first noticed that heteroge-
neous relationships could affect the random walk, and assigned
different propagation factors to each type of object relationship to
either derive a revised version of P-PageRank (ObjectRank) or a
global PageRank (PopRank). However, such solutions only give
one particular combination of all the possible meta paths using the
fixed weights determined by the damping factor and propagation
factors between different types. In our PathSim definition, users
can freely specify the meta paths they are interested in and assign
any weight to them. Random walk style similarity search is not
adopted in PathSim, which overcomes the disadvantage of return-
ing highly ranked objects rather than similar peers.

998

Table 8: Top-10 similar venues to “SIGMOD” under meta paths with different lengths on “full DBLP dataset”.

(a) Path: (CPAPC)2

Rank Venue Score

1 SIGMOD Conference 1
2 VLDB 0.981
3 ICDE 0.949
4 TKDE 0.650
5 SIGMOD Record 0.630
6 IEEE Data Eng. Bull. 0.530
7 PODS 0.467
8 ACM Trans. Database Syst. 0.429
9 EDBT 0.420
10 CIKM 0.410

(b) Path: (CPAPC)4

Rank Venue Score

1 SIGMOD Conference 1
2 VLDB 0.997
3 ICDE 0.996
4 TKDE 0.787
5 SIGMOD Record 0.686
6 PODS 0.586
7 KDD 0.553
8 CIKM 0.540
9 IEEE Data Eng. Bull. 0.532

10 J. Comput. Syst. Sci 0.463

(c) Path: (CPAPC)∞

Rank Venue Score

1 SIGMOD Conference 1
2 AAAI 0.9999
3 ESA 0.9999
4 IEEE Trans. on Commun. 0.9999
5 STACS 0.9997
6 PODC 0.9996
7 NIPS 0.9993
8 Comput. Geom. 0.9992
9 ICC 0.9991
10 ICDE 0.9984

Table 9: Impacts of length of meta path on clustering accuracy

on the “4-area dataset”.
CAC (CAC)2 (CAC)3

Venue NMI 0.8116 0.4603 0.4531

ACA (ACA)2 (ACA)3

Author NMI 0.6501 0.6091 0.5346

6. DISCUSSIONS
In this study, we assume that users know how to choose meta

path. In practice, there are several ways for a user to select the
best meta path or meta path combinations. First, a user can make
a choice based on her interest and domain knowledge. Second, she
can have several experimental trials, such as those done in Section
4, and choose the best one according to her intuition. Third, she
can label a small portion of data according to specific applications.
For example, one can label similar objects or rank them, and then
train the best meta path(s) and their weights by some learning al-
gorithms. By doing so, one can automatically choose appropriate
meta paths as well as the associated weights, and make the similar-
ity search adaptable to different application scenarios. The problem
on how to choose and weight different meta paths is similar to the
feature selection process in machine learning. In-depth study for a
systematic solution is left as a future research task.

7. CONCLUSIONS
We have introduced a novel and practical notion of meta path-

based similarity for heterogeneous information networks. We com-
paratively and systematically examine different semantics of sim-
ilarity measures in such networks and introduce a new meta path-
based similarity measure to find similar objects of the same type in
such networks. Meta paths give users flexibility to choose differ-
ent meta paths and their combinations based on their applications.
Moreover, we propose a new similarity measure, PathSim, under
this framework, which produces overall better similarity qualities
than the existing measures. Since meta paths can be arbitrarily
given, it is unrealistic to fully materialize all the possible sim-
ilarity results given different meta paths and their combinations.
However, online calculation requires matrix multiplication, which
is time consuming especially when the vector and matrix are not
sparse. Therefore, we proposed an efficient solution that partially
materializes several short meta paths and then applies online con-
catenation and combination among paths to give the top-k results
for a query. Experiments on real data sets show the effectiveness
of the similarity measure and the efficiency of our method. The
framework of meta path-based similarity search in networks can be
enhanced in many ways, e.g., weight learning for different meta
paths, which may help provide accurate similarity measures in real
systems and discover interesting relationships among objects.

8. REFERENCES

[1] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
Objectrank: authority-based keyword search in databases. In
VLDB’04, 564–575, 2004.

[2] S. Berchtold, B. Ertl, D. A. Keim, H.-P. Kriegel, and T. Seidl.
Fast nearest neighbor search in high-dimensional space. In
ICDE’98, 209–218, 1998.

[3] I. S. Dhillon, S. Mallela, and D. S. Modha.
Information-theoretic co-clustering. In KDD’03, 89–98,
2003.

[4] L. R. Dice. Measures of the amount of ecologic association
between species. Ecology, 26(3):297–302, 1945.

[5] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In PODS’01, 102–113, 2001.

[6] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós. Towards
scaling fully personalized pageRank: algorithms, lower
bounds, and experiments. Int. Math., 2(3):333–358, 2005.

[7] M. Gupta, A. Pathak, and S. Chakrabarti. Fast algorithms for
topk personalized pagerank queries. In WWW’08,
1225–1226, 2008.

[8] G. Jeh and J. Widom. Simrank: a measure of
structural-context similarity. In KDD’02, 538–543, 2002.

[9] K. Jarvelin and J. Kekalainen. Cumulated gain-based
evaluation of IR techniques. ACM TOIS 20(4):422–446,
2002.

[10] G. Jeh and J. Widom. Scaling personalized web search. In
WWW’03, 271–279, 2003.

[11] M. Kolahdouzan and C. Shahabi. Voronoi-based k nearest
neighbor search for spatial network databases. In VLDB’04,
840–851, 2004.

[12] D. Lizorkin, P. Velikhov, M. Grinev, and D. Turdakov.
Accuracy estimate and optimization techniques for simrank
computation. PVLDB, 1(1):422–433, 2008.

[13] Z. Nie, Y. Zhang, J.-R. Wen, and W.-Y. Ma. Object-level
ranking: bringing order to web objects. In WWW’05,
567–574, 2005.

[14] F. Pan, X. Zhang, and W. Wang. Crd: fast co-clustering on
large datasets utilizing sampling-based matrix
decomposition. In SIGMOD’08, 173–184, 2008.

[15] J. Shi, and J. Malik Normalized cuts and image
segmentation. IEEE Trans. on PAMI, 22(8):888–905, 2000.

[16] Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu.
Rankclus: integrating clustering with ranking for
heterogeneous information network analysis. In EDBT’09,
565–576, 2009.

[17] Y. Sun, J. Han, J. Gao, and Y. Yu. iTopicModel: Information
Network-Integrated Topic Modeling. In ICDM’09, 493-502,
2009.

[18] H. Tong, C. Faloutsos, J. Pan. Fast Random Walk with
Restart and Its Applications. In ICDM’06, 613–622, 2006.

[19] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set similarity
joins. In ICDE’09, 916–927, 2009.

[20] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. Scan: a
structural clustering algorithm for networks. In KDD’07,
824–833, 2007.

999

APPENDIX

In this Appendix, we present the technical details of the co-
clustering based pruning algorithm, examine the case of multi-
ple meta path combination, show an additional experiment on the
Flickr network, and finally present the proofs of the theorems.

A. DETAILS OF COCLUSTERING BASED

PRUNING ALGORITHM

1. Block-wise Commuting Matrix Materialization

The first problem is how to generate these clusters for each com-
muting matrix MP . Since one commuting matrix can be used for

the concatenation into two longer meta paths, i.e., MPM
T

P and

MT

PMP , we hope to find co-clusters of feature cluster and tar-
get cluster, within which all values are similar to each other. We
use a greedy KL-divergence based co-clustering method (summa-
rized in Algorithm 1), which is similar to the information-theoretic
co-clustering proposed in [3], but simplifies the feature space for
each object by merely using the feature cluster information. For
example, for P l = (APC), we will use the conditional prob-
ability of author clusters appearing in some conference c, say
p(Âu|c = “V LDB”), as the feature for conference c, use the con-
ditional probability of author clusters in some conference cluster
Ĉv , say p(Âu|Ĉv = “DB”), as the feature for conference clus-

ter Ĉv , and assign the conference to the conference cluster with
the minimum KL-divergence. The adjustment is the same for au-
thor type given current conference clusters. The whole process is
repeated for conference type and author type alternately, until the
clusters do not change any more.

The time complexity of Algorithm 1 is O(t(m + n)(UV)),
where t is the number of iterations, m and n are the number of
objects for feature type and target type, U and V are the numbers
of clusters for feature type and target type. Compared with the
original O(mn(U + V)) algorithm in [3], it is much more effi-
cient. Sampling-based variation algorithm such as in [14] can be
applied for further faster co-clustering. In our experiment setting,
we will select objects with higher degrees for the clustering, and
assign those with smaller degrees to the existing clusters.

Algorithm 1 Greedy Co-Clustering Algorithm

Input: Commuting Matrix MT
P , number of feature clusters (row clusters)

U , number of target clusters (column clusters) V
Output: row clusters {Ru}U

u=1, column clusters {Cv}V
v=1

1: //Initialization.
2: Randomly assign row objects into {Ru}U

u=1;

3: Randomly assign column objects into {Cv}V
v=1;

4: repeat

5: //get center vector of each Ru:

6: f(Ru) = 1
|Ru|

∑V
v=1 MT

P (Ru, Cv);

7: //Adjust row objects
8: foreach object xi in row objects do

9: f(xi) =
∑V

v=1 MT
P (xi, Cv);

10: assign xi into Ru, u = arg mink KL(f(xi)||f(Ru));
11: end for

12: //get center vector of each Cv :

13: f(Cv) = 1
|Cv |

∑U
u=1 MT

P (Ru, Cv)

14: //Adjust column objects
15: foreach object yj in row objects do

16: f(yj) =
∑U

u=1 MP (Ru, yj);
17: assign yj into Cv , v = arg minl KL(f(yj)||f(Cv));
18: end for

19: until {Ru}, {Cv} do not change significantly.

Once the clusters for each type of objects are obtained, the com-
muting matrix can be decomposed into disjoint blocks. To facili-
tate further concatenation on two meta paths for queries, necessary
statistical information is stored for each block. For each block b
denoted by row cluster Ru and column cluster Cv, we store:

1. Element sum of each block T {U×V }:
tuv =

∑

i∈Ru

∑

j∈Cv
MT

P (i, j);

2. Sum of row vectors (1-norm of each column vector) of each block

T
{U×m}
1 : tuv,1(j) =

∑

i∈Ru
MT

P (i, j), for j ∈ Cv ;

3. Square root of sum of square of row vectors (2-norm of each column

vector) of each block TT
{U×m}
1 :

t2uv,1(j) =
√

∑

i∈Ru
(MT

P (i, j))2, for j ∈ Cv ;

4. Sum of column vectors (1-norm of each row vector) of each block

T
{n×V }
2 : tuv,2(i) =

∑

j∈Cv
MT

P (i, j), for i ∈ Ru;

5. Square root of sum of square of column vectors (2-norm of each row

vector) of each block TT
{n×V }
2 :

t2uv,2(i) =
√

∑

j∈Cv
(MT

P (i, j))2, for i ∈ Ru.

2. Pruning Strategy in Path Concatenation

Now let’s focus on how we can get top-k results efficiently for
a query given the materialized block-wise commuting matrix. The
intuition is that we first check the most promising target cluster,
then if possible, prune the whole target cluster; if not, we first use
simple calculations to decide whether we need to further calcu-
late the similarity between the query and the candidate object, then
compute the exact similarity value using more complex operations
only for those needed.

THEOREM 3. Bounds for block-based similarity measure ap-

proximation. Given a query object x, the query vector is x =
MP (x, :). Let D be the diagonal vector of M , let x̂1 be the

compressed query vector given feature clusters {Ru}U
u=1, where

x̂1(u) = maxj∈Ru{x(j)}, and let x̂2 be the 2-norm query vec-

tor given feature clusters Ru, where x̂2(u) =
√

∑

j∈Ru
x(j)2,

the similarity between x and target cluster Cv , and the similarity

between x and candidate y ∈ Cv can be estimated using the fol-

lowing upper bounds:

1. upperbound 1:

∀y ∈ Cv , s(x, y) ≤ s(x, Cv) =
∑

y∈Cv
s(x, y) ≤ 2x̂T

1
T (:,v)

D(x)+1
;

2. upperbound 2: ∀y ∈ Cv, s(x, y) ≤ 2x̂T
2

TT1(:,y)

D(x)+D(y)
.

PROOF. See Proof in the Appendix D.

In Theorem 3, the upper bound for s(x,Cv) can be used to find the
most promising target clusters as well as to prune target clusters if
it is smaller than the lowest similarity in the current top-k results.
The upper bound for s(x, y) can be used to prune target objects that
are not promising, which only needs at most U times calculation,
whereas the exact calculation needs at most m times calculation.
Here, U is the number of feature clusters and m is the number of
feature objects, i.e., objects of type Al.

The search strategy is to first sort the target clusters according
to their upper bound of the similarity between the query x and the
clusterCv , i.e., s(x,Cv), in a decreasing order. The higher the sim-
ilarity the more likely this cluster contains more similar objects to
x. It is very critical to use the order to check the most promising tar-
get clusters first, by which the most desirable objects are retrieved
at an early stage and the upper bounds then have stronger power to
prune the remaining candidates. When a new target cluster needs

1000

to be checked, the upper bound can be used to prune the whole tar-
get cluster and all the remaining target clusters, if it is smaller than
the k-th value of the current top-k list. Next, when going to check
the candidates within the target cluster, the upper bound between
query object x and candidate y can be used to prune non-promising
candidates if it is smaller than the current threshold. The algo-
rithm PathSim-pruning is summarized in Algorithm 3. On Line
5, min(S) is the lowest similarity in the current top-k result set
S. Similar to PathSim-baseline (Algorithm 2), before the pruning
steps, we still need to first derive the candidate set. Compared with
the baseline algorithm, the pruning-based algorithm at most checks
the same number of candidates with the overhead to calculate the
upper bounds. In practice, a great number of candidates can be
pruned, and therefore the performance can be enhanced.

Algorithm 2 (PathSim-Baseline) Vector-Matrix Multiplication
Based Path Concatenation
Input: Query xi, Commuting Matrix MP , Diagonal Vector D, top-k K
Output: Top-k List SortList
1: CandidateSet = ∅;
2: foreach yk ∈ MP .neighbors(xi) do

3: foreach xj ∈ MT
P .neighbors(yk) do

4: CandidateSet = CandidateSet ∪ {xj};
5: end for

6: end for
7: List = ∅;
8: foreach xj ∈ CandidateSet do

9: value = 2 ∗ MP (i, :)MP (j, :)T /(D(i) + D(j));
10: List.update(xj , value, K);
11: end for

12: List.sort();
13: SortList = List.topk(K);
14: return SortList;

Algorithm 3 (PathSim-Pruning) Cluster-based Top-k Search on
Path Concatenation

Input: Query xi, Commuting matrix MT
P , Feature clusters {Ru}U

u=1,

Target clusters {Cv}V
v=1, Diagonal vector D, top-k K .

Output: Top-k list S.
1: Set CandidateSet = xi.neighbors.neighbors;
2: S = ∅;
3: Sort clusters in {Cv}V

v=1 according to upper bound of s(xi, Cv);
4: foreach Cv with decreasing order do
5: if the upper bound of s(xi, Cv) < min(S) then

6: break;
7: else

8: foreach xj ∈ Cv and xj ∈ CandidateSet do
9: if the upper bound of s(xi, xj) < min(S) then

10: continue;
11: else

12: s(xi, xj) =
2MP (xi,:)(MP (xj,:))T

D(xi)+D(xj)
;

13: Insert xj into S;
14: end if

15: end for

16: end if
17: end for

18: return S;

A.1 Efficiency Comparison
The time complexity for SimRank is O(KN2d2), where K is

the number of iterations, N is the total number of objects, and d
is the average neighbor size; the time complexity for calculating P-
PageRank for one query is O(KNd), where K,N, d has the same
meaning as in SimRank; whereas the time complexity for PathSim

using PathSim-baseline for single query is O(nd), where n <
N is the number of objects in the target type, d is the average degree
of objects in target type for partial commuting matrix MP l

. The

time complexity for RW and PRW are the same as PathSim. We can
see that similarity measure only using one meta path is much more
efficient than those also using longer meta paths in the network
(e.g., SimRank and P-PageRank).

In this sub-section, two algorithms proposed in Section 3,
i.e., PathSim-baseline and PathSim-pruning, are compared, for
efficiency study under different meta paths, namely, CPAPC,
(CPAPC)2 and APCPA (denoted as CAC, CACAC and
ACA for short). For the co-clustering algorithm, the number of
clusters for authors is set as 50, and that for conferences as 20. It is
easy to see that the more clusters used, the more accurate the upper
bounds would be, however the longer the calculation for the upper
bounds would be. A trade-off should be made to decide the best
number of clusters. Due to the limited space, we do not discuss the
issue in this paper.

First, we check the impacts of the number of neighbors of the
query on the execution time. Note, a query object with higher de-
gree usually leads to larger number of neighbors. Therefore, two
test query sets are selected based on their degrees to test the exe-
cution time for each meta path: one is of top-20 objects and the
other is of 1001th-1020th objects according to their link degrees.
We compare the performance of the two algorithms under three
meta paths. Each query is executed 5 times and the output time is
the total average execution time within each query set, and the re-
sults are summarized in Figure 3. From the results, one can see (1)
PathSim-pruning is more efficient than PathSim-baseline; (2) the
improvement rate depends on the meta path, the denser the corre-
sponding commuting matrix, the higher rate PathSim-pruning can
improve; and (3) the improvement rate also depends on the queries,
the more neighbors of a query, the higher rate PathSim-pruning can
improve. In Figure 4, we compare the efficiency under different
top-k’s (k = 5, 10, 20) for PathSim-pruning using query set 1.
Intuitively, a smaller top-k has stronger pruning power, and thus
needs less execution time, as demonstrated.

CAC CACAC ACA
0

1

2

3

4

Path Schema

A
v

e
ra

g
e

 Q
u

e
ry

 E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

baseline

pruning

(a) Test Query Set 1 (1-20)

CAC CACAC ACA
0

0.5

1

1.5

2

2.5

Path Schema

A
v

e
ra

g
e

 Q
u

e
ry

 E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

baseline

pruning

(b) Test Query Set 2 (1001-1020)

Figure 3: PathSim-baseline vs. PathSim-pruning on “full DBLP

dataset”.

Now we compare the pruning power of PathSim-pruning vs.
PathSim-baseline by considering two factors: the size of the neigh-
bors of a query (Fig. 5) and the density of the partial commuting
matrix MP (Fig. 6). 500 queries are randomly chosen for two
meta paths (CAC and CACAC), and the execution time is aver-
aged with 10 runs. The results show that the execution time for
PathSim-baseline is almost linear to the size of the candidate set,
and the improvement rate for PathSim-pruning is larger for queries
with more neighbors, which requires more calculation for exact
dot product operation between a query vector and candidate vec-
tors. Also, the denser that the commuting matrix corresponding to
the partial meta path (MCPAPC in comparison with MCPA), the

1001

CAC CACAC ACA
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Path Schema

A
v
g

 Q
u

e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
 (

s
)

k=5

k=10

k=20

Figure 4: Average query execution time given different top-k’s on “full

DBLP dataset” using PathSim-pruning.

greater the pruning power. The improvement rates are 18.23% and
68.04% for the two meta paths.

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Candidate Set Size

P
a

th
S

im
−

b
a

s
e

li
n

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s

)

(a) Candidate size vs. baseline
execution time

1−500 501−1000 1001−1500 1501−2000 >2000
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Neighbor Size

Im
p

ro
v

e
 R

a
te

(b) Neighbor size vs. improve-
ment rate

Figure 5: Efficiency study for queries with different neighbor size un-

der meta path CAC on “full DBLP dataset” based on 500 queries.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

PathSim−baseline Execution Time (s)

P
a

th
S

im
−

p
ru

n
in

g
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s

)

(a) Meta path: CAC

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

PathSim−baseline Execution Time (s)

P
a

th
S

im
−

p
ru

n
in

g
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s

)

(b) Meta path: CACAC

Figure 6: Pruning power denoted by the slope of the red fitting line

under two meta paths for type conference on “full DBLP dataset”.

B. MULTIPLE META PATH COMBINA

TION
In Section 3, we presented algorithms for similarity search in

single meta path. Now, we present a solution to combine mul-
tiple meta paths together. Formally, given r round trip meta
paths from Type A back to Type A, P1,P2, . . . ,Pr , and their
corresponding commuting matrix M1,M2, . . . ,Mr , with weights
w1, w2, . . . , wr specified by users, the combined similarity be-
tween objects xi, xj ∈ A are defined as: scomb(xi, xj) =
∑r

l=1 wlsl(xi, xj), where sl(xi, xj) = 2Ml(i,j)
Ml(i,i)+Ml(j,j)

.

EXAMPLE 4. Following the motivating example in the intro-

duction section, Table 10 shows the results of combining two meta

paths P1 = CPAPC and P2 = CPTPC with different weights

specified by w1 and w2, for query “DASFAA”.

Table 10: “DASFAA” with multiple meta paths.
Rank w1=0.2,w2=0.8 w1=0.5,w2=0.5 w1=0.8,w2=0.2

1 DASFAA DASFAA DASFAA
2 Data Knowl. Eng. DEXA DEXA
3 CIKM CIKM WAIM
4 EDBT Data Knowl. Eng. CIKM
5 Inf. Syst. EDBT APWeb

Table 11: Clustering accuracy for PathSim for meta path com-

binations on “DBIS dataset”.
w1 0 0.2 0.4 0.6 0.8 1
w2 1 0.8 0.6 0.4 0.2 0

CAC;CTC 0.7917 0.7936 0.8299 0.8587 0.8123 0.8116

ACA; (ACA)2 0.6091 0.6219 0.6506 0.6561 0.6508 0.6501

The reason why we need to combine several meta paths is that,
each meta path provides a unique angle (or a unique feature space)
to view the similarity between objects, and the ground truth may be
a cause of different factors. Some useful guidance of the weight as-
signment includes: longer path utilizes more remote relationships
and thus should be assigned with a smaller weight, such as in P-
PageRank and SimRank; and, meta path with more important rela-
tionships should be assigned with a higher weight. For automati-
cally determining the weights, users could provide training exam-
ples of similar objects to learn the weights of different meta paths
using machine learning algorithms.

Since each meta path plays an independent role to decide the
similarity, we can calculate top list for each of them and then com-
bine the results together. The critical problem is how to determine
if the remaining candidate objects are not going to appear in the
final top-k list, and thus can be safely removed. The general idea
for the search strategy is: (1) get top-k′ objects for each meta path
using single path top-k search algorithm, where k′ should be larger
than k (e.g., in a order of 2k, 4k, 8k, and so on); (2) check for
each meta path, whether current top-k′ objects can guarantee higher
similarity than the remaining ones, if not, expanding the top-k′ list
by recalculating the single meta path top-k′ list with a bigger k′

(e.g., k′ = 2k′); (3) repeat (2) until all the candidates generated
for each meta path can guarantee they are in the final list; and (4)
get the exact similarity score for each candidate and return top-k
of the candidates. One possible upper bound for remaining ob-
jects other than those in the current top-k lists can be calculated as
upperk =

∑

l wl ∗ TopKList[l].min, where TopKList[l].min
stands for the lowest similarity score of Top-k for the lth meta path.
The FA and TA methods [5] could also be applied here, if the full
ranking list is ready for each meta path using PathSim-baseline. We
now study the accuracy of combined meta paths using the “four-
area dataset”, evaluated by the clustering performance given the
similarity matrix. First, two meta paths for the type conference,
namely, CAC and CTC (short for CPAPC and CPTPC), are
selected and their linear combinations with different weights are
considered. Second, two meta paths with the same basic path but
different lengths, namelyACA and (ACA)2, are selected and their
linear combinations with different weights are considered. The
clustering accuracy measured by NMI for conferences and authors
is shown in Table 11, which shows that the combination of multiple
meta paths can produce better similarity than the single meta path
in terms of clustering accuracy.

C. CASE STUDY ON FLICKR NETWORK
In this case study, we show that one can merely use links in the

network rather than any content information to retrieve similar im-

1002

ages for a query image. Let “I” represent image, “T” tags that as-
sociated with each image, and “G” groups that each image belongs
to. Two meta paths are used and compared. The first is IT I , which
means common tags are used by two images at evaluation of their
similarity. The results are shown in Fig. 7. The second meta path
is IT IGITI , which means tags similarities are further measured
by their shared groups, and two images could be similar even they
do not share many exact same tags as long as these tags are used by
many images of the same groups. One can see that the second meta
path gives better results than the first one as shown in Fig. 8, where
the first image is the input query. This is likely due to that the latter
meta path provides additional information related to image groups,
and thus improves the similarity measure between images.

(a) top-1 (b) top-2 (c) top-3

(d) top-4 (e) top-5 (f) top-6

Figure 7: Top-6 images in Flickr network under meta path ITI .

(a) top-1 (b) top-2 (c) top-3

(d) top-4 (e) top-5 (f) top-6

Figure 8: Top-6 images in Flickr network under meta path ITIGITI .

Discussion. The Flickr network is an interesting example that goes
beyond the relational data. Our running example of bibliographic
network can be viewed as a network constructed from relational
data. So, naturally, it leads to two questions: (1) one may won-
der whether the meta path-based top-k similarity search can be ap-
plied to relational databases. The answer to this question is “Yes”,
if we treat data from multiple relations as information networks.
For example, to find the students most similar to a given student,
one can view multiple relations as interconnected information net-
works and meta-paths to be selected can be based on the course
taken, venues of the publications, advisors, or their weighted com-
binations. (2) One may also wonder whether the meta path-based
similarity search can go far beyond the network formed based on
relational data. This case study on the Flickr network shows that
the analysis of heterogeneous information networks can go far be-
yond typical relational data since this network consists of links con-

necting photos with bags of terms and groups. There are many
networks that cannot be constructed from relational data. For ex-
ample, a news/blog network contains links among themes, cate-
gories, time, locations, authors, terms, pictures, and so on, beyond
relational data. Similarity search in such networks can be readily
handled under the framework presented in this study.

D. PROOFS OF THEOREMS
Here are the proofs of the theorems introduced in the previous

sections.
Theorem 1: Properties of PathSim.

PROOF. (1) s(xi, xj) =
2Mij

Mii+Mjj
=

2Mji

Mii+Mjj
= s(xj , xi),

since Mij = MP (i, :) · Ml(j, :) = Ml(j, :) · Ml(i, :) = Mji,
where · means the dot product of two vectors.

(2) LetMl(i, :) = (a1, a2, . . . , ap),Ml(j, :) = (b1, b2, . . . , bp),
easy to see ak, bk are nonnegative for all 1 ≤ k ≤ p, then Mij =
∑p

k=1 akbk ≥ 0, Mii =
∑p

k=1 a
2
k > 0 (no dangling object), and

Mjj =
∑p

k=1 b
2
k > 0, therefore s(xi, xj) ≥ 0; also,

∑p
k=1 a

2
k +

∑p
k=1 b

2
k ≥ 2

∑p
k=1 akbk, with equality holding when ak = bk

for every k, therefore s(xi, xj) ≤ 1, and s(xi, xi) = 1.

(3) Mij =
∑

k akbk ≤
√

∑

k a2
k

∑

k b2k =
√

MiiMjj (by Cauchy-

Schwarz inequality), then s(xi, xj) ≤ 2√
Mii/Mjj+

√
Mjj /Mii

.

Theorem 2: Limiting behavior of PathSim under infinity length

meta path.

PROOF. Since M = (MPM
T

P) is real symmetric, it can be

decomposed as M = PDP T , where D is a diagonal matrix
with the values of eigenvalues of M , P is an orthogonal ma-
trix composed of eigenvectors corresponding to eigenvalues in

D. Let r be the first column in P , then Mk = PDkP T .

Let s
(k)
ij = 2Mk(i,j)

Mk(i,i)+Mk(j,j)
, λ1 be the largest eigenvalue of

M , then s
(k)
ij =

2(PDkP T /λk
1
)(i,j)

(PDkP T (i,i)+PDkP T (j,j))/λk
1

, and lim
k→∞

s
(k)
ij =

2r(i)r(j)
r(i)r(i)+r(j)r(j)

.

Theorem 3: Bounds for block-based similarity measure ap-

proximation.

PROOF. 1.
∑

y∈Cv
s(x, y) =

∑

y∈Cv

2xT
y

D(x)+D(y)

≤ 2xT ∑

y∈Cv
y

D(x)+1
=

∑

u

2x(Ru)T ∑

y∈Cv
y(Ru)

D(x)+1
≤ ∑

u
2x̂1(u)T (u,v)

D(x)+1

=
2x̂T

1
T (:,v)

D(x)+1
, since according to Holder’s Inequality, a

T
b ≤

||a||∞||b||1.

2. s(x, y) = 2xT
y

D(x)+D(y)
=

2
∑

u x(Ru)T
y(Ru)

D(x)+D(y)
. Since aT b ≤

||a||2||b||2 according to Cauchy-Schwarz inequality, then the above for-

mula ≤ 2
∑

u x̂2(u)TT1(u,y)

D(x)+D(y)
=

2x̂T
2

TT1(:,y)

D(x)+D(y)
.

E. ACKNOWLEDGEMENT
The authors would like to thank Lu Liu, Fabio Fumarola, Yintao

Yu and Ziyu Guan for their valuable comments and suggestions.
The work was supported in part by U.S. National Science Foun-

dation grants IIS-09-05215, the U.S. Army Research Laboratory
under Cooperative Agreement No. W911NF-09-2-0053 (NS-CTA),
and MIAS, a DHS-IDS Center for Multimodal Information Access
and Synthesis at UIUC. The views and conclusions contained in
this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of
the Army Research Laboratory or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation here
on.

1003

